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Abstract. Temperature, as an environmental factor, plays an important role in life of fishes. This study 
was conducted to investigate effects of temperature on body shape of swordtail (Xiphophorus hellerii) 
during the early development using geometric morphometrics. A total of 60 newly-born fries were reared 
in two temperature treatments (17 and 26°C) for two months. The left side of the specimens were then 
photographed, 16 landmarks were defined and digitized using the software tpsDig2 to extract the body 
shape data. The extracted data were superimposed using generalized procreates analysis, analyzed 
using the discriminant function analysis and Hoteling’s T2. There was a significant difference between 
body shape of the specimens exposed to the temperature treatments with those experienced higher 
temperature had a deeper head at the level of the operculum, deeper body depth and caudal peduncle, 
and shorter tail length. The results indicated that temperature is an important environmental parameter 
impacting the body shape of green swordtail during the early developmental stage. 
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Introduction. The environmental parameters may affect fish performance and survival 
directly or indirectly via environmentally induced phenotypic variation (Hare & Cowen 
1997; Fuiman & Batty 1997; Brander et al 2001; McCormick 2003; Eagderi et al 2013, 
2014). Phenotypic plasticity is an important mechanism of phenotypic adaptation and 
defined as the ability of a single genotype to produce more than one alternative 
phenotype in response to environmental conditions (West-Eberhard 1989; Schlichting & 
Pigliucci 1998; Robinson & Parsons 2002; Relyea & Hoverman 2003). In fishes, the 
environmentally induced phenotypic plasticity have been proved during the early 
developmental stages (Pechenic et al 1998; Relyea & Hoverman 2003). 

 Water temperature affects the phenotype of fish species and thermally induced 
phenotypic plasticity can be stated as modifications of the relative timing of development 
of different organs during ontogeny (Stickland et al 1988; Fuiman & Batty 1997; 
Koumoundouros et al 2001; Johnston & Temple 2002; Campinho et al 2004; Sfakianakis 
et al 2004; Jordaan et al 2006), or changes of features like gender (Pavlidis et al 2000; 
Koumoundouros et al 2002; Piferrer et al 2005) and morphometric and meristic counts 
(Lindsey 1988). With the exception of studies in gender and meristic characters, most 
studies on phenotypic plasticity in fishes are focused on developmental stages.  

 The poecilids are the popular ornamental fishes across the world. The genus 
Xiphophorus with 25 species (Nelson 2006) is native to areas of Belize, Guatemala, 
Honduras and Mexico. The green swordtail, Xiphophorus hellerii Heckel, 1848 is a small 
viviparous species and one of the most popular aquarium fish species being introduced to 
at least 33 countries (Sterba 1989; Tamaru et al 2001; Webb et al 2007). This species 
tolerates a wide range of temperature, salinity and dissolved oxygen, consuming a wide 
range of food items that are available in its habitat (Goodwin 2003). This exotic species 
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has been reported in two natural water bodies of Iran i.e. Persis and Namak Lake basins 
of Iran (Esmaeili et al 2010; Mousavi-Sabet & Eagderi 2014). 

 This study was conducted to investigate whether water temperature experienced 
by X. hellerii during the early larval stage influences its phenotype, namely, body shape. 
Hence, effects of water temperature during the early life stage of X. hellerii on phenotype 
were investigated. At the present study, this species was exposed to temperatures lower 
and higher than its threshold tolerance, i.e. 17°C and 26°C, then the phenotypic 
responses of such exposure were studied before the onset of sexual dimorphism using 
geometric morphometric techniques. 
 
Material and Method. A total of 60 one-month old juveniles of X. hellerii were obtained 
from a local ornamental fish farm in September 2013 and transferred to two 100 L 
rearing fiberglass tanks at the fisheries laboratory of University of Tehran (Karaj, Iran). 
During rearing period, the animals were fed by a mixture of the Artemia nauplii and a 
commercial food pellet (Biomar, Denmark; 58% protein, 15% lipid) at 5% of their body 
weight twice a day. Throughout this period, water temperature, dissolved oxygen and pH 
were 24-26°C, 7.5±0.6 mg L-1 and 7.2±0.1, respectively. 

 After three months, a total of 20 ripe females were randomly sampled and 
transferred to a 100-L breeding glass aquarium. After giving birth, a total of 60 newly 
born fish were collected and exposed to two temperature treatments for two months, 
which were lower and higher than the threshold tolerance of X. hellerii, i.e. 17°C and 
26°C. Three 30-L glass aquariums were devoted for each temperature treatment 
equipped to continuous aeration having 30 fish (each had 10). The natural photoperiod 
was applied for both treatments. During the rearing period, water temperature, dissolved 
oxygen and pH were similar to those mentioned above and fries were fed by Artemia 
nauplii and micro-worms (Panagrellus redivivus). Later, a mixture of the Artemia nauplii 
and Biomar commercial food pellet were also added to their diet. 

 At the end of experiment, fish were collected using a scoop net and anesthetized 
using 1% clove oil. The left side of fish was photographed using a stereomicroscope 
equipped to a digital Cannon camera with a 5 megapixel resolution. Then, the larvae 
were preserved in 5% buffered formalin and stored in 70% ethanol after 24 hours for 
further examinations. The visceral contents of the specimens were examined under a 
stereomicroscope to find their sex that was not detectable 60 days after birth. To extract 
body shape data, 16 landmark-points were digitized using tpsDig2 software (version 
2.16). The landmark-points were selected at specific points where a proper model of fish 
body shape could be inferred (Figure 1).  

 

 

Figure 1. Defined landmark points to extract the body shape data of Xiphophorus hellerii. (1) 
anterior-most point of the snout tip on the upper jaw, (2) anterior margin of the eye, (3) center of 
the eye, (4) posterior margin of the eye, (5) dorsal edge of the head perpendicular to the center of 
the eye, (6) anterior and (7) posterior end of the dorsal fin base, (8) posterodorsal end of caudal 
peduncle at its connection to caudal fin, (9) posterior end of caudal peduncle, (10) posteroventral 
end of caudal peduncle at its connection to caudal fin, (11) posterior and (12) anterior ends of the 
anal fin base, (13) dorsal origin of pectoral fin, (14) posterior edge of operculum, (15) ventral end 

of the gill slit, and (16) ventral edge of the head perpendicular to the center of eye. 
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The digitization error was estimated according to Adriaens (2015). The estimated error 
was about 6.8% based on a sub-sample, which was low enough to be ignored. The 
landmark data was subjected to a generalized procrustes analysis (GPA) to remove non-
shape data including scale, direction and position. 
 The landmark data were superimposed using GPA and were then analyzed using 
Discriminate Functional Analysis (DFA) and Hotelling’s T2 to examine a significant 
difference between the temperatures treatments. All multivariate analyses were 
performed using the software PAST (Hammer et al 2001). The consensus configurations 
of two populations were visualized using the wireframe graphs in MorphoJ (version 1.01) 
(Klingenberg 2011) to compare their shape difference. 
 
Results and Discussion. Both DFA and Hoteling’s T2 indicated that there was a 
significant difference in body shape of the two treatments (p < 0.0001, Figure 2). 
Comparison of the body shape of the two temperature groups using wireframe diagram 
showed that they differ in the position of the snout (mouth), head depth at the level of 
the operculum, the position of the eye and pectoral fin, depth of the caudal peduncle and 
tail length (Figure 3). The results showed a dorsal position of the mouth and eye, deeper 
head at the level of the operculum, deeper body depth and caudal peduncle, and shorter 
tail length in those exposed to the higher temperature. 
 

 
Figure 2. The discriminant function analysis of Xiphophorus hellerii exposed  

to two temperature treatments during the early development. 
 
The present study showed that there was a significant difference in the body shape of X. 
hellerii specimens exposed to different temperatures. A difference in the body shape not 
only reflects genetic characteristics of populations but also environmental parameters 
(Guill et al 2003). Morphological changes induced by environmental factors may help 
better understanding of the phenotypic plasticity process as result of induced factors 
(Mohaddasi et al 2013; Jalili et al 2015). Various environmental factors affect biological 
features such as morphological characters of fishes (Peres-Neto & Magnan 2004). They 
create new ecological and evolutionary challenge for fishes (Baxter 1977) causing some 
variations in their body shape because they have to respond to new environmental 
condition to survive and decrease the adverse effect of resulted pressures (Fuiman & 
Batty 1997). The water temperature is one of the important abiotic factors influencing 
fishes (Georgakopoulou et al 2007; Sfakianakis et al 2011). Sfakianakis et al (2011) 
studied the effect of four different water temperature (22, 25, 28, and 31°C) on 
phenotype of Danio rerio during the early developmental stages and showed that their 
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morphometric and meristic characters were influenced by temperature. Therefore, 
temperature as an important abiotic factor, may influence fish growth and metabolism 
through alternation of the physical parameters of the water and dissolved oxygen 
(Wimberger 1992). 

Figure 3. Wireframe graph showing the consensus body shape differences of Xiphophorus 
hellerii exposed to two temperature treatments during early development.  

 
Our results showed that X. hellerii has deeper head and body shape in higher water 
temperatures. The results also showed that lower temperatures lead to a pointy head, 
longer tail and a dorsal position of the pectoral fin forming a fusiform body shape. 
Georgakopoulou et al (2007) studied the effect of the temperature on the body shape of 
Dicentrarchus labrax during the early developmental stages and showed that the fish 
were more fusiform in lower temperatures. Decreasing water temperature increases 
water viscosity and density and, thus, changes of body shape towards more fusiform 
figure to decrease the dragging cost of swimming in cold water (Wimberger 1992). 
Hence, physicochemical features of aquatic ecosystems change with environmental 
factors especially water temperature and, therefore, fish respond to new variation using 
the body shape (Sfakianakis 2011).  

 A deeper head at the level of the operculum and a dorsal position of the mouth 
were observed in the specimens exposed to higher temperatures. A high water 
temperature decreases dissolved oxygen and increases the oxygen demand in fishes 
(Mortimer 1971). Therefore, fishes adapt to these changes through developing larger gill 
cavity and the upper position of the mouth. Since, a larger gill cavity and an upper mouth 
may help to effectively use of the surface water that contains higher dissolved oxygen 
(Kramer & McClure 1982). 

 
Conclusions. Phenotypic plasticity is an important mechanism of phenotypic adaptation 
in response to environmental conditions. The results of the present study showed that 
temperature play a vital role during the early development of green swordtail by 
alternation of its body shape to provide its biological requirements to survive and 
decrease the adverse effect of resulted pressures. 
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